

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 179 (2006) 103-110

. . . .

SOLID STATE CHEMISTRY

JOURNAL OF

www.elsevier.com/locate/jssc

Crystal structure and vibrational properies of $Rb_2MgWO_2(PO_4)_2$ —A new framework phosphate

M. Mączka^{a,*}, A. Waśkowska^a, J. Hanuza^{a,b}

^aInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland ^bDepartment of Bioorganic Chemistry, Faculty of Industry and Economics, University of Economics, ul. Komandorska 118/120, 53-345 Wrocław, Poland

> Received 7 July 2005; received in revised form 19 September 2005; accepted 29 September 2005 Available online 15 November 2005

Abstract

The new compound $\text{Rb}_2\text{MgWO}_2(\text{PO}_4)_2$ has been synthesized and characterized by a single-crystal X-structure determination, and IR and Raman spectroscopic studies. The crystal structure is orthorhombic, space group *Pbca*, with the unit cell dimensions a = 9.891(2), b = 12.641(2), c = 15.338(3) Å, Z = 8. Compared to the K₂ M^{II} WO₂(PO₄)₂ series, where $M^{II} = \text{Mg}$, Mn, Fe, Co, Ni, and Cd, the volume of the unit cell in the present compound is nearly doubled. The MgO₆ and WO₆ octahedra are arranged into polyhedral groups consisting of two edge sharing MgO₆ joined by corners with two WO₆ octahedra. These groups are interconnected through the PO₄ tetrahedra into layers in $a \times b$ plane. The Rb⁺ ions perform thermally activated displacements within the cavities formed between the polyhedral layers. The origin of various Raman and IR modes is discussed. These results indicate that a clear energy gap exists between the stretching and remaining modes. The most intense modes are shown to be due to vibrations of the W–O bonds. © 2005 Elsevier Inc. All rights reserved.

Keywords: Rb₂MgWO₂(PO₄)₂; Phosphate; Crystal structure; Phonon properties

1. Introduction

Titanyl orthophosphates, ATiOPO₄ (A = Na, K, Rb, Cs, Tl, Ag) are well known nonlinear optical (NLO) materials of technological importance [1-5]. These compounds exhibit a high-temperature phase transition from *Pnan* to *Pna2*₁ space group [6,7]. It has been shown that the same type of structure can be obtained by replacing Ti^{IV} ions by M = Zr, Sn, Nb, Ta or Sb, and/or P^{V} atoms by B = As, Si or Ge atoms [8–11]. The general formula of these compounds can therefore be written as AMOBO₄. It is also possible to replace two Ti^{IV} ions by two cations of different valencies. So far this kind of replacement has been accomplished for potassium analogues of KTiOPO₄ (KTP) with Ti^{IV} ions replaced by Mg^{II} and Nb^{V} ions, or by W^{VI} and $M^{II} = Mg$, Ni, Co, Fe, Mn, Cd ions [12–15]. The chemical formulas of these compounds are: K(Mg_{1/3}Nb_{2/3}) PO_5 [12] and $K_2MWO_2(PO_4)_2$ [13–15]. In contrary to the AMOBO₄ phosphates, $K(Mg_{1/3}Nb_{2/3})PO_5$ and K_2MWO_2 (PO₄)₂ are not isostructural with KTP, although their crystal structures are closely related to KTP. K(Mg_{1/3}Nb_{2/3})PO₅ crystallizes in the $P4_122$ space group, and shows a disordered structure with statistical distribution of Nb and Mg at the same sites [12]. Besides, this compound does not exhibit any phase transition. $K_2MWO_2(PO_4)_2$ phosphates crystallize in the $P4_12_12$ space group and exhibit an ordered structure. Except for $K_2NiWO_2(PO_4)_2$ [13], the compounds form a class of materials exhibiting different phase transitions of structural and ferroic nature in the temperature range of 100-870 K [14,15]. In particular, K₂MgWO₂(PO₄)₂ was shown to exhibit at least three ferroelastic and ferroelectric phase transitions above room temperature [15]. A common feature of the crystal structures of the $K_2MWO_2(PO_4)_2$ compounds is the oxygen framework built of corner sharing $M^{\Pi}O_6$ and WO₆ octahedral chains interconnected via PO₄ tetrahedra into the threedimensional network with the cavities of different geometry. The dynamics of the K⁺ ions located in the cavities contribute to the temperature-dependent phase transitions and anomalous behaviour of electrical conductivity [14,15]; however, the question which structural units are the major contributors to the NLO properties is still under discussion.

^{*}Corresponding author. Fax: + 48713441029.

E-mail address: m.maczka@int.pan.wroc.pl (M. Mączka).

^{0022-4596/\$ -} see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2005.09.049

Synthesis of di-rubidium magnesium tungsten dioxide *bis*(phosphate), abbreviated Rb₂MgWP, was undertaken in search for new NLO materials, being the close analogues of KTP, in which K⁺ ions have been replaced by Rb⁺ ions, and two symmetrically nonrelated Ti^{IV} ions have been replaced by Mg^{II} and W^{VI}. In the present paper we report single-crystal X-ray diffraction, Raman and IR studies of Rb₂MgWO₂(PO₄)₂ phosphate in order to describe the principal structure characteristics. Our results show that whereas replacement of K⁺ by Rb⁺ ions in KTP does not change the crystal structure, the replacement of K⁺ by Rb⁺ in K₂MgWO₂(PO₄)₂ leads to the essential modification in the crystal structure. As a result, Rb₂MgWO₂(PO₄)₂ crystallizes in a new type of orthorhombic structure, not isostructural with KTP or K₂MgWO₂(PO₄)₂ and even not related to these structures.

2. Experiment

Single crystals of Rb₂MgWP were grown by cooling of the molten, stoichiometric mixture of MgO, Rb₂CO₃, WO₃ and P₂O₅. The mixture was kept at 800 °C for 20 h, cooled with a 1 °C/h rate to 700 °C and 5 °C/h rate down to room temperature. The obtained colourless crystals of optical quality were separated from the solidified flux with hot water. The crystal composition was checked with the help of X-ray dispersion measurements using a Philips SEM 515 scanning electron microscope and EDAX 9800 microanalyzer. This method showed that the Rb:Mg:W:P ratio is approximately 31.6:16.1:15.9:36.4, what agrees with the Rb₂MgWO₂(PO₄)₂ composition within experimental error of this method.

Polycrystalline infrared spectra were measured with a Biorad 575C FT–IR spectrometer as KBr pellets in the $1500-400 \text{ cm}^{-1}$ region and in Nujol suspension for the $500-30 \text{ cm}^{-1}$ region. Raman spectra were recorded in 180° scattering geometry with a Bruker FT-Raman RFS 100/S spectrometer. Excitation was performed with a 1064 nm line of a YAG:Nd³⁺ laser. Blackman–Harris four-term apodization was applied and the number of collected scans was 64. The IR and Raman spectra were recorded with a spectral resolution of 2 cm^{-1} .

A sample of dimensions given in Table 1 was chosen for X-ray diffraction measurements on a single-crystal Oxford Diffraction/CCD X-calibur diffractometer, operating in κ geometry and using graphite monochromated Mo $K\alpha$ radiation. The intensity data were collected with ω -scan technique and steps of $\Delta \omega = 1.2^{\circ}$. The exposure time was 20 s/image. The 1225 K images taken in eight sets of 153 exposures at different ω positions covered about 98% of the Ewald sphere. Crystal and instrument stability was controlled by one image, selected as a standard and measured after each 60 images [16]. The intensities, corrected for Lorentz-polarization effects, were integrated and numerical absorption correction based on the crystal shape was applied [17]. The Structure was solved with Patterson method using the SHELXS97 program [18] and

Table 1

Crystal data, experimental details and structure refinement results for Rb₂MgWO₂(PO₄)₂

Crystal data	
Temperature (K)	297
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions (Å)	
a	9.891(2)
b	12.641(2)
С	15.338(3)
Volume (Å ³)	1917.7(3)
Z, calculated density (Mg/m^3)	8,4.163
Crystal size (mm)	$0.21\times0.18\times0.17$
Data collection	
Wavelength (Å)	0.71073
2θ max for data collection	65.15
Limiting indices:	
h	-14, 13
k	-15, 18
l	-23, 20
Reflections collected	28462
Reflections unique	3454
Reflections [> $2\sigma(I)$]	2356
Absorption coefficient (mm ⁻¹)	22.57
Absorption correction	Numerical
R(int) before, after abs. correction	0.138, 0.062
T_{\min}, T_{\max}	0.127, 0.322
Refinement	
Refinement method	Full-matrix least-squares on F^2
Number of refined parameters	146
Goodness-of-fit on F^2	0.996
Final R indices $[I > 2\sigma(I)]$	
R_1	0.0264
wR_2	0.0338
Extinction coefficient	0.00211(2)
Largest diff. peak and hole $(e\dot{A}^{-3})$	1.69 and -1.67

subsequent difference Fourier calculations. The structure refinement calculations were performed with the SHELXL99 package [19]. Crystal data and further experimental details are summarized in Table 1 together with the parameters of the structure refinements.

3. Results and discussion

3.1. Single-crystal X-ray diffraction studies

The structure of Rb₂MgWP adopts centrosymmetric space group *Pbca* with lattice parameters given in Table 1. The unit cell volume is doubled compared to those of the $K_2M^{II}WO_2(PO_4)_2$ crystal series, which all retain the volume of the parent KTP phosphate. All atoms occupy general positions and their final parameters together with the equivalent thermal displacement parameters U_{eq} are listed in Table 2. Tables 3 and 4 give selected bond lengths and anisotropic displacement parameters, respectively. Supplementary data are available from the Fachinformationszentrum (FIZ) Karlsruhe, Informationsdienste ICSD,

Table 2 Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for Rb₂MgWO₂(PO₄)₂

Table 3		
Selected bond	lengths (Å) for	Rb ₂ MgWO ₂ (PO ₄) ₂

	X	У	Ζ	U(eq)
W(l)	7483(1)	5072(1)	3580(1)	5(1)
Rb(l)	8895(1)	6737(1)	1570(1)	27(1)
Rb(2)	3906(1)	3661(1)	3862(1)	38(1)
Mg(l)	9998(1)	6309(1)	5027(1)	7(1)
P(1)	7579(1)	7560(1)	4055(1)	6(1)
P(2)	10,753(1)	5050(1)	3342(1)	6(1)
O(1)	6231(3)	7571(2)	4495(2)	12(1)
O(2)	8748(3)	7502(2)	4676(2)	13(1)
O(3)	7676(3)	6614(2)	3401(2)	11(1)
O(4)	7722(3)	8530(2)	3427(2)	13(1)
O(5)	10,889(3)	6064(2)	3875(2)	10(1)
O(6)	10,975(3)	4037(2)	3872(2)	12(1)
O(7)	11,921(2)	5092(2)	2652(2)	11(1)
O(8)	9386(2)	5007(2)	2844(2)	9(1)
O(9)	8542(2)	4998(2)	4501(2)	12(1)
O(10)	5924(3)	5215(2)	4070(2)	15(1)

U(eq) is defined as one-third of the trace of the orthogonalized U_{ii} tensor.

D-76344 Eggenstein-Leopoldshafen, Germany (e-mail: crysdata@fiz-karlsruhe.de) under the CSD number 415569 (filename RbMgWPO.cif).

The crystal host lattice consists of two edge sharing MgO_6 octahedra connected by corners with two WO_6 octahedra. These groups are linked by PO₄ tetrahedra into the characteristic three-dimensional framework (Fig. 1). Two symmetrically independent Rb-atoms are located in the large cavities. Rb(1) is coordinated by eight O-atoms in the distances ranging from 2.948(3) to 3.168(3)Å, while Rb(2) is surrounded by 7+2 oxygen atoms at the distances from 2.818(3) to 3.481(3)Å (Table 3). Relatively high values of anisotropic thermal displacement amplitudes of Rb⁺ indicate that these loosely bound ions perform thermally activated movements within the framework cages (Table 4). Two distinct phosphate groups do not retain a regular symmetry as typically in KTP [9] and TlTiOPO₄ [6]. The $P(1)O_4$ tetrahedron is quite distorted (Table 3), as one of its edges between O(3) and O(4), links the W-centered octahedra into the chain running parallel to the b-axis (Fig. 1). The O(1) and O(2) corners of the same tetrahedron join the MgO_6 octahedra building in this way the polyhedral layer in the $a \times b$ plane. The P(2)O₄ tetrahedron is more regular (Table 3). Two shorter P(2)-O bonds maintain the sequence -P(2)-O(5)-Mg-O(6)-P(2')-, while the atoms O(7) and O(8) link two symmetry-related WO_6 octahedra (Fig. 2).

The MgO₆ and WO₆ octahedra are also distorted but the latter show much wider spread of bond distances. In MgO₆ there are four shorter bonds ranging from 1.992(3) to 2.023(3)Å, corresponding to Mg–O–P(2) and Mg–O–P(1) connections, respectively. Two longer bonds with O(9) and O(9') [2.311(3) and 2.339(3) Å, respectively], are involved in bridging the MgO₆ and WO₆ octahedra (Fig. 2). In the group formed by two MgO₆ and two WO₆ octahedra the

W(1)-O(10)	1.725(3)
W(1)-O(9)	1.761(3)
W(1)-O(7)#1	1.969(3)
W(1)-O(4)#2	1.974(2)
W(1)-O(3)	1.978(2)
W(1)-O(8)	2.196(2)
Mg(1)-O(6)#3	1.992(3)
Mg(1)-O(5)	1.999(3)
Mg(1)-O(1)#4	2.007(3)
Mg(1)-O(2)	2.023(3)
Mg(1)-O(9)#3	2.311(3)
Mg(1)-O(9)	2.339(3)
P(1)-O(1) P(1)-O(2) P(1)-O(3) P(1)-O(4) P(2)-O(5) P(2)-O(6) P(2)-O(8) P(2)-O(7)	$1.495(3) \\ 1.499(3) \\ 1.564(2) \\ 1.565(3) \\ 1.527(3) \\ 1.532(3) \\ 1.553(3) \\ 1.568(3)$
$\begin{array}{l} Rb(1)-O(10)\#5\\ Rb(1)-O(8)\\ Rb(1)-O(6)\#6\\ Rb(1)-O(1)\#5\\ Rb(1)-O(3)\\ Rb(1)-O(2)\#7\\ Rb(1)-O(2)\#7\\ Rb(1)-O(7)\#1\\ Rb(1)-O(5)\#1 \end{array}$	2.948(3) 2.973(3) 2.989(3) 3.020(3) 3.059(3) 3.065(3) 3.092(3) 3.168(3)
Rb(2)-O(10) Rb(2)-O(6)#8 Rb(2)-O(1)#9 Rb(2)-O(2)#2 Rb(2)-O(8)#1 Rb(2)-O(7)#8 Rb(2)-O(7)#8 Rb(2)-O(5)#2 Rb(2)-O(4)#2 Rb(2)-O(10)#9	2.818(3) 2.938(3) 2.965(3) 3.015(3) 3.157(3) 3.252(3) 3.289(3) 3.405(3) 3.481(3)
W(1)-Rb(1)	3.9854(7)
W(1)-Rb(2)	3.9860(8)
W(1)-Rb(1)#1	4.1318(8)

Symmetry transformations used to generate equivalent atoms: #1: $x - \frac{1}{2}$, y, $-z + \frac{1}{2}; #2: -x + \frac{3}{2}, y - \frac{1}{2}, z; #3: -x + 2, -y + 1, -z + 1; #4: x + \frac{1}{2}, -y + \frac{3}{2}, z = \frac{1}{2}$ -z+1; #5: $x+\frac{1}{2}$, y, $-z+\frac{1}{2}$; #6: -x+2, $y+\frac{1}{2}$, $-z+\frac{1}{2}$; #7: x, $-y+\frac{3}{2}$, $z-\frac{1}{2}$; #8: x-1, y, z; #9: -x+1, -y+1, -z+1.

W-O(9) distance is much shorter than the Mg-O(9) and Mg–O(9') separations [1.765(3), compared to 2.307(4) and 2.335(4) Å, respectively]. It is also worth noting that one of the W–O bonds in the WO₆ octahedron [W–O(10), 1.725(3)Å] is terminal. This configuration is different from that observed for KTP analogues, containing TiO_6 , ZrO_6 , SnO₆, SbO₆, NbO₆ or TaO₆ octahedra. The difference may be attributed to the strength of $M - O \cdots M'$ bridges connecting the octahedra into infinite chains in the structure of KTP type $(O \cdots M')$ denotes the longer metal-oxygen distance in the bridge). In case of tetravalent or pentavalent atoms, like Ti, Zr, Sb, etc., the $O \cdots M'$ bonds are relatively strong and the octahedral chains are

Table 4 Anisotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for RbMgWO₂(PO₄)₂

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
W(1)	6(1)	4(1)	4(1)	0(1)	0(1)	0(1)
Rb(1)	26(1)	21(1)	33(1)	13(1)	9(1)	4(1)
Rb(2)	17(1)	33(1)	63(1)	27(1)	-7(1)	-5(1)
Mg(1)	10(1)	7(1)	6(1)	0(1)	1(1)	0(1)
P(1)	8(1)	4(1)	7(1)	0(1)	0(1)	0(1)
P(2)	7(1)	7(1)	5(1)	1(1)	1(1)	0(1)
O(2)	15(2)	6(1)	18(2)	-3(1)	-5(1)	2(1)
O(1)	10(1)	6(1)	21(2)	2(1)	2(1)	2(1)
O(3)	19(2)	3(1)	10(1)	-2(1)	2(1)	2(1)
O(4)	22(2)	9(1)	8(1)	1(1)	4(1)	1(1)
O(5)	15(2)	9(1)	7(1)	-5(1)	2(1)	-1(1)
O(6)	13(1)	11(1)	11(2)	5(1)	2(1)	-1(1)
O(7)	9(1)	15(1)	7(1)	0(1)	2(1)	-1(1)
O(8)	8(1)	11(1)	8(1)	1(1)	-1(1)	0(1)
O(9)	8(1)	16(1)	11(1)	-2(1)	2(1)	-2(1)
O(10)	13(1)	13(1)	19(2)	0(1)	5(1)	-1(1)

The anisotropic displacement factor exponent takes the form: $-2\pi^2(h^2a^{*2}U_{11}+\cdots+2hka^*b^*U_{12}).$

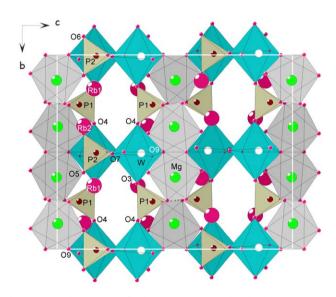


Fig. 1. Crystal structure of $Rb_2MgWO_2(PO_4)_2$ showing the presence of tunnels.

not broken when small K^+ cations are replaced with much larger Rb^+ or Cs^+ ions. In the $M_2^IMgWO_2(PO_4)_2$ structure, however, the O····Mg interaction within the W–O···Mg bridge is relatively weak. Therefore, whereas the $K_2MgWO_2(PO_4)_2$ structure is related to the structure of KTP, the substitution of larger Rb^+ for smaller K^+ leads to the new type of structure with broken chains.

3.2. Selection rules and vibrational modes

The factor group analysis predicts that there should be $48A_g + 48B_{1g} + 48B_{2g} + 48B_{3g} + 48A_u + 47B_{1u} + 47B_{2u} + 47-B_{3u}$ (k = 0) optic and $B_{1u} + B_{2u} + B_{3u}$ acoustic unit cell modes for the orthorhombic *Pbca* structure. Since P–O and W–O bonds are much stronger than the Mg–O or Rb–O



Fig. 2. Projection of the $Rb_2MgWO_2(PO_4)_2$ crystal structure along the *b*-axis.

bonds, from the spectroscopic point of view the structure can be considered as built of PO_4^{3-} and WO_6 molecular groups and Rb^+ and Mg^{2+} cations. The vibrational modes can, therefore, be subdivided into $6A_g + 6B_{1g} + 6B_{2g} +$ $6B_{3g} + 6A_u + 6B_{1u} + 6B_{2u} + 6B_{3u}$ translational motions of Rb^{+} ions, $3A_g + 3B_{1g} + 3B_{2g} + 3B_{3g} + 3A_u + 3B_{1u} + 3B_{2u} + 3B_{3u}$ translational motions of Mg^{2+} ions, $3A_g +$ $3B_{1g} + 3B_{2g} + 3B_{3g} + 3A_u + 3B_{1u} + 3B_{2u} + 3B_{3u}$ translational motions of WO_6 polyhedra, $6A_g + 6B_{1g} + 6B_{2g} +$ $6B_{3g} + 6A_u + 6B_{1u} + 6B_{2u} + 6B_{3u}$ translational motions of PO_4^{3-} ions, and $30A_g + 30B_{1g} + 30B_{2g} + 30B_{3g} + 30A_u +$ $30B_{1u} + 30B_{2u} + 30B_{3u}$ modes describing internal and librational motions of the WO₆ polyhedra and PO_4^{3-} ions. It should be noticed, however, that from the $18A_g$ + $18B_{1g} + 18B_{2g} + 18B_{3g} + 18A_u + 18B_{1u} + 18B_{2u} + 18B_{3u}$ translational modes, the $B_{1u} + B_{2u} + B_{3u}$ acoustic modes should be subtracted. The "g" modes are Raman active, B_{1u} , B_{2u} and B_{3u} are IR active and A_u modes are inactive.

The IR and Raman spectra are presented in Figs. 3–5, and the measured wavenumbers are listed in Table 5. It can be seen that the spectra consist of two separated regions: 1200-830 and $660-50 \text{ cm}^{-1}$. The bands observed in the first region can be assigned to the stretching modes and those below 660 cm^{-1} to the bending and lattice modes. Such a clear separation of two regions was not observed in the case of KTP and RTP crystals. This difference can be related to the shift of the WO₆ stretching modes towards

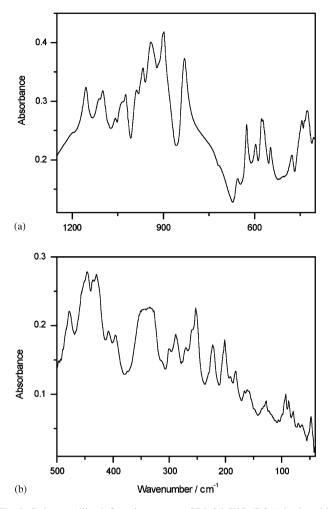


Fig. 3. Polycrystalline infrared spectrum of $Rb_2MgWO_2(PO_4)_2$ in the mid-IR (a) and far-IR (b) regions.

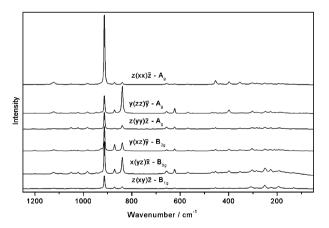


Fig. 4. Polarized Raman spectra of Rb₂MgWO₂(PO₄)₂.

higher frequencies when compared to the TiO_6 stretching modes due to weak interaction of the WO₆ octahedra with Mg^{2+} ions and higher valence of the tungsten atoms with respect to titanium atoms.

The stretching modes can be subdivided into stretching vibrations of the PO_4^{3-} ions and WO_6 groups. The PO_4^{3-} free ion, having T_d symmetry, should exhibit the presence

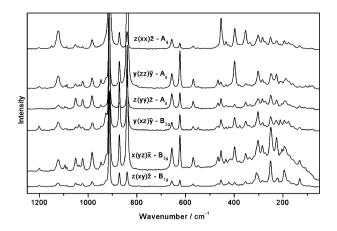


Fig. 5. Enlarged polarized Raman spectra of $Rb_2MgWO_2(PO_4)_2$ showing details for weak modes.

of $v_1(A_1) = 938 \text{ cm}^{-1}$ and $v_3(F_2) = 1017 \text{ cm}^{-1}$ stretching modes [20]. The A_1 mode is Raman active and F_2 mode is both IR and Raman active. In the Rb₂MgWP phosphate these modes should be observed both in IR- and Raman spectra and F_2 mode should split into triplet for every polarization configuration. Because there are two crystallographically nonequivalent phosphate ions, for every polarization configuration the $2v_1(PO_4)$ and $6v_3(PO_4)$ components should be present. As far as the WO₆ octahedron with O_h symmetry is concerned, three stretching modes: $v_1(A_{1g})$, $v_2(E_g)$ and $v_3(F_{1u})$ [20] have to be expected. The v_1 and v_2 modes are Raman-active and the v_3 mode is IR-active. The v_2 and v_3 modes should split into two and three components, respectively.

The former studies of a number of titanyl and niobyl phosphates showed that the v_1 and v_3 modes of the PO₄³⁻ ions are observed around 933-1000 and 970-1150 cm⁻¹. respectively [21-25]. The stretching modes of TiO₆ and NbO₆ octahedra were located in the 600-850 and $630-890 \text{ cm}^{-1}$ region, respectively [21-25]. It has been shown that the strongest Raman line can be attributed to the v_1 symmetric stretching mode of the TiO₆ (NbO₆) unit. This band shifts towards higher frequency with increasing ion valency (from $650-710 \text{ cm}^{-1}$ for TiO₆ to around $870-890 \text{ cm}^{-1}$ for NbO₆ [21-25]). In the present crystal a very strong Raman band at 913 cm⁻¹ can unambiguously be assigned to the $v_1(WO_6)$ mode. This band is strongly polarized and it shows most of its intensity when both the incident and scattered light is polarized along direction parallel to the tunnels occupied by Rb^+ ions, i.e. for the xx polarization. This effect is very similar to the behaviour of KTP. It is remarkable that scattering intensity of this mode for the xx polarization is very large and its bandwidth is very small (only 4.6 cm^{-1}). Since in the stimulated Raman effect the amplification of a Raman line is proportional to the spontaneous Raman scattering cross-section and inversely proportional to the linewidth of the corresponding Raman line, this mode can probably contribute to efficient stimulated Raman scattering. We may also observe two Raman modes at 871 and 839 cm⁻¹. Since

Table 5	
Raman and IR wavenumbers	for Rb ₂ MgWO ₂ (PO ₄) ₂

Raman					IR	Assignment		
$v(zz)\bar{y} A_g$	$z(xx)\overline{z} A_g$	$z(yy)\overline{z} A_g$	$y(xz)\overline{y} B_{2g}$	$x(yz)\bar{x} B_{3g}$	$z(xy)\overline{z} B_{1g}$			
200w			1201w	1200w		1196w	v ₃ (PO ₄)	
_	1148vw	_	_		_	1155s		
123m	1123m	1121w	1122m	1122m	1122w	1111m		
095w	_	1095vw	1095vw	1095w	_	1098m		
087w	1087vw	1087vw	1087vw	1086w	1086vw	1071w		
050w	1051w	1050m	1050w	1050m	1050w	1035m		
036w	1038vw	_	1037w	1036w	1036w	1023m		
021w	1021w	1021m	1022w	1021m	1021w	988w		
83w	983w	984m	982m	984m	984w	967m		
47w		947w	947w	946w	946vw	940s	$v_1(PO_4)$	
25w	_	_	926w	924w	924w	902s		
_				—	—	898s		
913s	913vs	913s	913s	913s	913s	914w	$v_1(WO_6)$	
371m	871m	871m	871m	871m	871m	_	$v_2(WO_6)$	
39s	839m	839m	839s	839s	839m	830s	$v_3(WO_6)$	
656m	656w	656m	656w	655m	655w	655w	$v_4(PO_4)$	
523m	623w	623m	623m	623m	623w	626m		
_	—	—	—	—	—	597w		
567w	568w	568w	568w	568w	568w	577m		
_	—	—	—	—	—	572m		
_	_	_	547w	548w	548vw	547w		
_	—	—	471w			477w	$v_2(PO_4)$	
-66w	—	466w	466w	466w	466vw			
455w	454m	454w	454m	454m	454w	445w		
33vw	433w	433vw	433w	434w	432vw	436vw	$v_4(WO_6)$	
20vw	422vw	423vw	422w	421vw	422w	430m		
_	_	415vw	—	415vw	_	408w		
99m	398m	399w	399m	399m	399w	396w	$v_5(WO_6)$	
377vw	379vw	377vw	376w	377vw	_	_	T'(Mg)	
352w	353m	352w	352m	352w	353w	346s		
335vw	335w	335vw	335vw	335w	330vw	334s		
320vw	_	320vw	320vw	320vw	_	314vw	$T'(PO_4)$ and $L(PO_4)$	
_	_	_	308sh	308sh	308m	_		
01m	301m	301w	302m	302m		300w		
.84w	284w	285w	284w	285w	285w	288m		
74w	273vw	272w	272vw	272vw	_	270w		
_		—		—	—	258sh		
49m	251m	250m	251m	250m	251m	253m	$v_6(WO_6)$	
26m	225w	226w	227w	226m	221w	223m	$T'(PO_4)$ and $L(PO_4)$	
22011 211w	223w 212vw	220w	227w 211w	22011 210vw	221W	225111	I (1 O_4) and $L(PO_4)$	
205w	212vw	204vw	211W	210Vw 204w				
.87w	 193w	204VW 189W	 193w	193m	 194m	191vw		
87w 74sh	195w 176w	189w 172vw	193w 177w	19511 171w	176sh	1910w 182w		
59w	162vw	1 / 2 V VV	161vw	171w	1708H	166vw		
	102vw	_	156vw	 156vw	155w	160w		
32w	130w	132w	130w	132w	131w	127w	$T'(W), L(WO_6)$ and	
.05w	109vw	107vw		107vw		12/w	$T'(W), L(WO_6)$ and $T'(Rb)$	
05w 1w	92vw	93vw	_	93vw		93w	(10)	
35w	92VW 82VW	93Vw 82vw	_	93VW	_	93w 88w		
5.5 VV	02 V W	OZ V VV				88w 79w		
						79w 71vw		
						63vw		
						0.0 1 11		

vs. s, sh, m, w and vw denote very strong, strong, shoulder, medium, weak and very weak, respectively

the former band does not have any counterpart in the IR spectrum, we assign this band to the v_2 asymmetric stretching mode of the WO₆ group. The remaining band at 839 cm^{-1} can be most likely assigned to the $v_3(WO_6)$. The v_1 and v_3 modes of the PO₄³⁻ ion are observed at 898-947 and 967-1201 cm⁻¹, respectively. The frequency of the $v_3(PO_4)$ modes is higher than that observed for the titanyl $(990-1130 \text{ cm}^{-1})$ [21-23] and niobyl phosphates $(1000-1140 \text{ cm}^{-1})$ [24,25]. Since the study of Na SuperIonic Conductor (NASICON)-type phosphates revealed frequency increase with increasing covalent character of the metal-oxygen bonds within M-O-P bridge [26], the observed frequency increase in Rb2MgWP can be explained as a result of stronger covalent character of the W-O bonds when compared with the Nb-O and Ti-O bonds. The splitting of the $v_3(PO_4)$ mode is also larger (234 cm^{-1}) than that observed for the titanyl phosphates $(\sim 140 \text{ cm}^{-1})$ due to large distortion of the PO₄³⁻ tetrahedra.

In the bending modes region one should observe symmetric and asymmetric bending modes of the PO_4^{3-} ions ($v_2(PO_4)$) and $v_4(PO_4)$, respectively). These modes are seen at 420 and 567 cm^{-1} for a free phosphate ion [20]. The remaining bending modes can be attributed to the WO₆ group. For a free WO_6 octahedron with the O_h symmetry three bending modes should be observed: $v_4(F_{1u})$, $v_5(F_{2g})$ and $v_6(F_{2u})$. The former studies of a number of phosphates showed that the $v_4(PO_4)$ modes are usually well separated from the $v_2(PO_4)$ modes, giving rise to bands in the $490-670 \text{ cm}^{-1}$ region [24-27]. In case of Rb₂MgWP we may unambiguously assign the group of bands in the 540–660 cm⁻¹ region to the $v_4(PO_4)$ modes. The $v_2(PO_4)$ modes were observed for the titanyl and niobyl phosphates at 370–430 cm⁻¹ [21–25]. Since, however, the $v_4(PO_4)$ modes are observed at significantly higher frequency than in the titanyl and niobyl phosphates, the same behaviour may be expected for the $v_2(PO_4)$ modes. Moreover, the study of $Na_2Cr_2(PO_4)_3$ has shown that for this compound, having very similar frequency range of the $v_4(PO_4)$ modes $(545-670 \text{ cm}^{-1} \text{ [26]})$, the $v_2(\text{PO}_4)$ modes are present at $450-470 \text{ cm}^{-1}$. We assign, therefore, the $450-480 \text{ cm}^{-1}$ bands to the $v_2(PO_4)$ modes. The $v_4(TiO_6)$, $v_5(TiO_6)$ and $v_6(TiO_6)$ bending modes were located for KTP either at 323, 269 and 213 cm^{-1} [21] or at 460–500, 320–385 and $220-290 \text{ cm}^{-1}$ [23]. In case of niobyl phosphates, the bands observed near 450, 350 and 270 cm⁻¹ were assigned to v₄(NbO₆), v₅(NbO₆) and v₆(NbO₆) modes, respectively [24,25]. Since v_5 mode of an octahedron gives rise to strong Raman band, we assign to this mode the relatively strong Raman line observed for Rb_2MgWP at 399 cm^{-1} . The $v_4(WO_6)$ mode corresponds, most likely, to the 400–440 cm⁻¹ IR bands. The v_6 (WO₆) mode is difficult to assign since it is located in the same region as the lattice modes. We locate this mode close to $250 \,\mathrm{cm}^{-1}$.

In the lattice modes region, the translational modes of K^+ , Mg^{2+} and PO_4^{3-} ions as well as librational modes of PO_4^{3-} ions and WO_6 groups should be expected. The former studies of phosphates showed that it is difficult to

distinguish between librational and translational modes of the PO_4^{3-} ions, which were located in a broad wavenumber range, $100-300 \text{ cm}^{-1}$ [26]. The later studies of potassiumlanthanide phosphates and $Pb_3(PO_4)_2$ evidenced that the higher frequency modes have larger contribution of phosphate ions librations whereas the lower frequency modes have large contribution of translational motions of the phosphate ions [27,28]. Translational modes of heavy Pb^{2+} ions were observed below 100 cm^{-1} [28] but the frequency of these modes should increase significantly with atomic mass decrease and increase if covalent character of the metal-oxygen bonds is taken into account. As a result, the T'(Fe) and T'(Cr) modes in Na₃Fe₂(PO₄)₃ and $Na_3Cr_2(PO_4)_3$ phosphates were observed at 340–405 cm⁻¹ [26]. Since atomic mass of Mg is smaller than that of Fe or Cr but the Mg–O bond character less covalent, we may expect to observe T'(Mg) modes in a similar frequency range as T(Fe) and T(Cr) modes. We assign, therefore, the $330-380 \,\mathrm{cm}^{-1}$ bands to the T'(Mg) modes. The translations of Rb⁺ ions should be observed at very low wavenumbers. since rubidium-oxygen distances are large and the corresponding interactions have strongly ionic character. The studies of KTP located $T'(K^+)$ modes at 96 and 120 cm^{-1} [29], whereas the study of potassium-antimony phosphates located these modes below $150 \,\mathrm{cm}^{-1}$ [30]. On the other hand, in tungstates and perovskites the $T'(W^{6+})$ and $L(WO_6)$ modes appeared below 150 cm⁻¹ [31-33]. We assign, therefore, the weak bands below $140 \,\mathrm{cm}^{-1}$ to the coupled modes involving large contribution of the Rb⁺ and W^{6+} ions translations together with the librations of the WO_6 groups.

4. Conclusions

A replacement of Rb^+ for K^+ in $K_2MgWO_2(PO_4)_2$ appears to have a primary impact on the crystal structure and NLO properties. Unlike the other members of the $K_2 M^{II} WO_2(PO_4)_2$ series, the present structure is centrosymmetric at room temperature and as such does not allow the second-harmonic generation. Besides, the structure of $Rb_2MgWO_2(PO_4)_2$ is not related to the structure of KTP, like K₂MgWO₂(PO₄)₂, but crystallizes in the new type of orthorhombic structure. The MgO₆ and WO₆ octahedra in this structure are not linked into infinite chains, like in the potassium analog, but are arranged into polyhedral groups consisting of two edge sharing MgO₆ joined by corners with two WO₆ octahedra. The common feature of KTP and this new structure is the presence of the tunnels occupied by alkali metal ions. Relatively high values of anisotropic thermal displacement amplitudes of Rb⁺ indicate that these loosely bound ions perform thermally activated movements within the tunnels. This property allows for the fast ionic conductivity at elevated temperature.

Raman and IR spectra are consistent with the crystal structure. They show, for example, large splitting of the $v_3(PO_4)$ mode that indicates considerable distortion of the PO_4^{3-} tetrahedra. The spectra show also that stretching

modes of WO₆ groups are observed at significantly higher frequency (839–913 cm⁻¹) than stretching modes of TiO₆ groups (600–850 cm⁻¹). The most intense Raman band is that one corresponding to the symmetric stretching mode of the WO₆ octahedron. Our results suggest that this mode can probably contribute to efficient stimulated Raman scattering, making Rb₂MgWO₂(PO₄)₂ a prospective material for the Raman laser application.

References

- [1] F.Z. Zumsteg, J.D. Bierlein, T.E. Gier, J. Appl. Phys. 47 (1976) 4980.
- [2] J.D. Bierlein, H. Vanherzeele, J. Opt. Soc. Am. B 6 (1989) 622.
- [3] I. Juwiler, A. Arie, A. Skliar, G. Rosenman, Opt. Lett. 24 (1999) 1236.
- [4] J. Hellstrom, V. Pasiskevicius, F. Laurell, H. Karlsson, Opt. Lett. 24 (1999) 1233.
- [5] J. Zhang, J. Wang, B. Ge, Y. Liu, X. Hu, R.I. Boughton, J. Cryst. Growth 267 (2004) 517.
- [6] W.T.A. Harrison, T.E. Gier, G.D. Stucky, A.J. Schultz, Mater. Res. Bull. 30 (1995) 1341.
- [7] P. Delarue, C. Lecomte, M. Jannin, G. Marnier, B. Menaert, Phys. Rev. B 58 (1998) 5287.
- [8] G.D. Stucky, M.L.F. Phillips, T.E. Gier, Chem. Mater. 1 (1989) 492.
- [9] P.A. Thomas, A.M. Glazer, B.E. Watts, Acta Crystallogr. B 46 (1990) 333.
- [10] S.T. Norberg, J. Gustafsson, B.E. Mellander, Acta Crystallogr. B 59 (2003) 588.
- [11] M. Simpson, W.T.A. Harrison, Solid State Sci. 6 (2004) 981.
- [12] E.M. McCarron III, J.C. Calabrese, T.E. Gier, L.K. Cheng, C.M. Foris, J.D. Bierlein, J. Solid State Chem. 102 (1993) 354.
- [13] U. Peuchert, L. Bohaty, Acta Crystallogr. C 51 (1995) 1719.
- [14] U. Peuchert, L. Bohaty, J. Schreuer, Acta Crystallogr. C 53 (1997) 11.
- [15] U. Peuchert, L. Bohaty, J. Schneider, J. Appl. Crystallogr. 31 (1998) 10.

- [16] Oxford Diffraction, CrysAlis CCD Version 1.170.14, Oxford Diffraction Ltd., Oxford, UK, 2002.
- [17] Oxford Diffraction, CrysAlis RED Version 1.170.14, Oxford Diffraction Ltd., Oxford, UK, 2002.
- [18] G.M. Sheldrick, SHELXS97, Program for Solution of the Crystal Structures, University of Goettingen, 1997.
- [19] G.M. Sheldrick, SHELXL99, Program for Crystal Structure Refinement, University of Goettingen, 1999.
- [20] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.
- [21] G.E. Kugel, F. Brehat, B. Wyncke, M.D. Fontana, G. Marnier, C. Carabatos-edelec, J. Mangin, J. Phys. C 21 (1988) 5565.
- [22] C.-S. Tu, A.R. Guo, R. Tao, R.S. Katiyar, J. Appl. Phys. 79 (1996) 3235.
- [23] K. Vivekanandan, S. Selvasekarapandian, P. Kolandaivel, M.T. Sebastian, S. Suma, Mater. Chem. Phys. 49 (1997) 204.
- [24] M.J. Bushiri, R.S. Jayasree, M. Fakhfakh, V.U. Nayar, Mater. Chem. Phys. 73 (2002) 179.
- [25] M.J. Bushiri, V.U. Nayar, J. Nonlinear Opt. Phys. Mater. 10 (2001) 345.
- [26] M. Barj, G. Lucazeau, C. Delmas, J. Solid State Chem. 100 (1992) 141.
- [27] L. Benarafa, L. Rghioui, R. Nejjar, M. Saidi Idrissi, M. Knidiri, A. Loriaux, F. Wallart, Spectrochim. Acta 1 (61) (2005) 419.
- [28] B. Mihailova, U. Bismayer, A. Engelhardt, B. Guttler, J. Phys. Condens. Matter. 13 (9) (2001) 9383.
- [29] M.J. Bushiri, V.P. Mahadevan Pillai, R. Ratheesh, V.U. Nayar, J. Phys. Chem. Solids 60 (1999) 1983.
- [30] E. Husson, F. Genet, A. Lachgar, Y. Piffard, J. Solid State Chem. 75 (1988) 305.
- [31] M. Liegeois-Duyckaerts, P. Tarte, Spectrochim. Acta A 30 (1973) 1771.
- [32] M. Maczka, J. Solid State Chem. 129 (1997) 287.
- [33] M. Maczka, J. Hanuza, A.F. Fuentes, Y. Morioka, J. Phys.: Condens. Matter 16 (2004) 2297.